5,862 research outputs found

    Inelastic neutron scattering studies of the quantum frustrated magnet clinoatacamite, γ\gamma-Cu2(OD)3Cl, a proposed valence bond solid (VBS)

    Full text link
    The frustrated magnet clinoatacamite, γ\gamma-Cu2_2(OH)3_3Cl, is attracting a lot of interest after suggestions that at low temperature it forms an exotic quantum state termed a Valence Bond Solid (VBS) made from dimerised Cu2+^{2+} (S=1/2S=1/2) spins.\cite{Lee_clinoatacamite} Key to the arguments surrounding this proposal were suggestions that the kagom\'e planes in the magnetic pyrochlore lattice of clinoatacamite are only weakly coupled, causing the system to behave as a quasi-2-dimensional magnet. This was reasoned from the near 95^\circ angles made at the bridging oxygens that mediate exchange between the Cu ions that link the kagom\'e planes. Recent work pointed out that this exchange model is inappropriate for γ\gamma-Cu2_2(OH)3_3Cl, where the oxygen is present as a μ3\mu_3-OH.\cite{Wills_JPC} Further, it used symmetry calculations and neutron powder diffraction to show that the low temperature magnetic structure (T<6T<6 K) was canted and involved significant spin ordering on all the Cu2+^{2+} spins, which is incompatible with the interpretation of simultaneous VBS and N\'eel ordering. Correspondingly, clinoatacamite is best considered a distorted pyrochlore magnet. In this report we show detailed inelastic neutron scattering spectra and revisit the responses of this frustrated quantum magnet.Comment: Proceedings of The International Conference on Highly Frustrated Magnetism 2008 (HFM2008

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    Pseudo-half-metalicity in the double perovskite Sr2_2CrReO6_6 from density-functional calculations

    Full text link
    The electronic structure of the spintronic material Sr2_2CrReO6_6 is studied by means of full-potential linear muffin-tin orbital method. Scalar relativistic calculations predict Sr2_2CrReO6_6 to be half-metallic with a magnetic moment of 1 μB\mu_B. When spin-orbit coupling is included, the half-metallic gap closes into a pseudo-gap, and an unquenched rhenium orbital moment appears, resulting in a significant increase of the total magnetic moment to 1.28 μB\mu_B. This moment is significantly larger than the experimental moment of 0.9 μB\mu_B. A possible explanation of this discrepancy is that the anti-site disorder in Sr2_2CrReO6_6 is significantly larger than hitherto assumed.Comment: 3 Pages, 1 figure, 1 Tabl

    Integration of psychological models in the design of artificial creatures

    Get PDF
    Artificial creatures form an increasingly important component of interactive computer games. Examples of such creatures exist which can interact with each other and the game player and learn from their experiences. However, we argue, the design of the underlying architecture and algorithms has to a large extent overlooked knowledge from psychology and cognitive sciences. We explore the integration of observations from studies of motivational systems and emotional behaviour into the design of artificial creatures. An initial implementation of our ideas using the “sim agent” toolkit illustrates that physiological models can be used as the basis for creatures with animal like behaviour attributes. The current aim of this research is to increase the “realism” of artificial creatures in interactive game-play, but it may have wider implications for the development of AI

    Aging and memory properties of topologically frustrated magnets

    Full text link
    The model 2d kagome system (H3O)Fe3(SO4)2(OH)6 and the 3d pyrochlore Y2Mo2O7 are two well characterized examples of low-disordered frustrated antiferromagnets which rather then condensing into spin liquid have been found to undergo a freezing transition with spin glass-like properties. We explore more deeply the comparison of their properties with those of spin glasses, by the study of characteristic rejuvenation and memory effects in the non-stationary susceptibility. While the pyrochlore shows clear evidence for these non-trivial effects, implying temperature selective aging, that is characteristic of a wide hierarchical distribution of equilibration processes, the kagome system does n not show clearly these effects. Rather, it seems to evolve towards the same final state independently of temperature.Comment: submitted for the proceedings of the 46th MMM conference (Seattle, 2001

    A Parsec-Scale Study of the 5/15 GHz Spectral Indices of the Compact Radio Sources in M82

    Get PDF
    Observations of the starburst galaxy, M82, have been made with the VLA in its A-configuration at 15 GHz and MERLIN at 5 GHz enabling a spectral analysis of the compact radio structure on a scale of < 0.1'' (1.6 pc). Crucial to these observations was the inclusion of the Pie Town VLBA antenna, which increased the resolution of the VLA observations by a factor of ~2. A number of the weaker sources are shown to have thermal spectra and are identified as HII regions with emission measures ~10^7 cm^-6 pc. Some of the sources appear to be optically thick at 5 GHz implying even higher emission measures of ~10^8 cm^-6 pc. The number of compact radio sources in M82 whose origin has been determined is now 46, of which 30 are supernova related and the remaining 16 are HII regions. An additional 15 sources are noted, but have yet to be identified, meaning that the total number of compact sources in M82 is at least 61. Also, it is shown that the distribution of HII regions is correlated with the large-scale ionised gas distribution, but is different from the distribution of supernova remnants. In addition, the brightest HII region at (B1950) 09h 51m 42.21s +69 54' 59.2'' shows a spectral index gradient across its resolved structure which we attribute to the source becoming optically thick towards its centre.Comment: Accepted for publication in MNRAS. 15 pages, 9 figure
    corecore